Mononuclear cells and vascular repair in HHT

نویسندگان

  • Calinda K. E. Dingenouts
  • Marie-José Goumans
  • Wineke Bakker
چکیده

Hereditary hemorrhagic telangiectasia (HHT) or Rendu-Osler-Weber disease is a rare genetic vascular disorder known for its endothelial dysplasia causing arteriovenous malformations and severe bleedings. HHT-1 and HHT-2 are the most prevalent variants and are caused by heterozygous mutations in endoglin and activin receptor-like kinase 1, respectively. An undervalued aspect of the disease is that HHT patients experience persistent inflammation. Although endothelial and mural cells have been the main research focus trying to unravel the mechanism behind the disease, wound healing is a process with a delicate balance between inflammatory and vascular cells. Inflammatory cells are part of the mononuclear cells (MNCs) fraction, and can, next to eliciting an immune response, also have angiogenic potential. This biphasic effect of MNC can hold a promising mechanism to further elucidate treatment strategies for HHT patients. Before MNC are able to contribute to repair, they need to home to and retain in ischemic and damaged tissue. Directed migration (homing) of MNCs following tissue damage is regulated by the stromal cell derived factor 1 (SDF1). MNCs that express the C-X-C chemokine receptor 4 (CXCR4) migrate toward the tightly regulated gradient of SDF1. This directed migration of monocytes and lymphocytes can be inhibited by dipeptidyl peptidase 4 (DPP4). Interestingly, MNC of HHT patients express elevated levels of DPP4 and show impaired homing toward damaged tissue. Impaired homing capacity of the MNCs might therefore contribute to the impaired angiogenesis and tissue repair observed in HHT patients. This review summarizes recent studies regarding the role of MNCs in the etiology of HHT and vascular repair, and evaluates the efficacy of DPP4 inhibition in tissue integrity and repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circulating Angiogenic Cell Dysfunction in Patients with Hereditary Hemorrhagic Telangiectasia

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder. Circulating angiogenic cells (CACs) play an important role in vascular repair and regeneration. This study was designed to examine the function of CACs derived from patients with HHT. Peripheral blood mononuclear cells (PBMNCs) isolated from patients with HHT and age- and gender-matched healthy volunteers we...

متن کامل

Thalidomide Effects in Patients with Hereditary Hemorrhagic Telangiectasia During Therapeutic Treatment and in Fli-EGFP Transgenic Zebrafish Model.

BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by recurrent epistaxis, mucocutaneous telangiectasia, and arteriovenous malformations. The efficacy of traditional treatments for HHT is very limited. The aim of this study was to investigate the therapeutic role of thalidomide in HHT patients and the effect in FLI-EGFP transgenic zebrafish mod...

متن کامل

Emergency thoracic endovascular aortic repair with celiac artery coverage in hereditary hemorrhagic telangiectasia

Celiac artery (CA) coverage during thoracic endovascular aortic repair has been demonstrated to be a feasible and effective strategy for selected cases. However, there is a potential risk of ischemic complications due to CA coverage in patients with certain types of hereditary hemorrhagic telangiectasia (HHT). Herein, we report a case of thoracoabdominal aortic rupture in a patient with HHT tha...

متن کامل

Vascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology

Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T ...

متن کامل

Blood outgrowth endothelial cells from Hereditary Haemorrhagic Telangiectasia patients reveal abnormalities compatible with vascular lesions.

OBJECTIVE Hereditary haemorrhagic telangiectasia (HHT) is originated by mutations in endoglin (HHT1) and ALK1 (HHT2) genes. The purpose of this work was to isolate and characterize circulating endothelial cells from HHT patients. METHODS Pure primary cultures of blood outgrowth endothelial cells (BOECs) were obtained from 50 ml of peripheral blood by selection on collagen plates with endothel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015